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Abstract: In this paper, the MATLAB with Artificial 
Neural Networks toolbox is used for artificial neural 
networks was developed to predict microhardness of 
shipbuilding steel plate A36. Different modeling method 
based on artificial neural networks is used by many 
researchers for a wide range of engineering applications. 
Different researchers propose some models to predict 
microhardness using neural networks, but these models 
need to be extended. We propose a model with two hidden 
layers feed forward type of artificial neural networks for 
predict microhardness. In our study we consider the carbon 
equivalent, based upon the International Institute of 
Welding equation and the carbon equivalent equation 
related to Ito-Bessyo considering the chemical composition 
based on nickel, silicium, manganum, copper, niobium, 
vanadium, titanium, chromium molybdenum, and the 
Charpy impact energy. As input we consider the chemical 
composition of different naval high resistance steel plates. 
We consider more than 50 different data were gathered 
from experimental results. We consider different format of 
input parameters that cover the chemical composition and 
Charpy impact energy and output parameter which is 
microhardness. The networks was trained to predict the 
microhardness amounts as output.The artificial neural 
networs was developed and training using a back 
propagation algorithm applied to the experimental data 
from literature. In our study, the back propagation training 
algorithm has been used in feed forward for hidden layers 
of our artificial neural networks architecture. Back 
propagation algorithm, is one of the most used training 
algorithms for the multilayer perceptron, is a gradient 
descent technique to minimize the error for particular 
training pattern in which it adjust the weights. The 
assignment of initial weights and other related parameters 
may also influence the performance of the artificial neural 
network. We consider two different models for neural 
networks architecture, and the performance of them will be 
tested. All of the results obtained from experimental 
studies and predicted by using the training, testing and 
validation results for two different neural networks 
architecture will be given. We optimized the neural 
network architecture to find the best equation to predict 
microhardness values by specific inputs. The predicted 
values are in very good agreement with the measured ones. 

Key words: Artificial network, Microhardness, A36 steel 
plate. 
 
1.INTRODUCTION 
 
Modern commercial ship designs in the last years 
have shown a continuing trend of increased 
utilization of high strength, alloy steel plate for 
weight reduction, increased payload, and increased 
mobility. The loads that affect the ship’s structure, 
have special mentions regarding to the structural 
strength limitations imposed by the ship’s 
classification society. The ship structures are 
subjected to a complex range of dynamic loadings in 
service and stresses built into the hull during 
fabrication. The dynamic loads include wave 
loadings, sea slap, slamming, vibration, thermal 
excursions (Hawthorne, 1975).  
The principal factors contributing to the loss of the 
ships were corrosion and cracking of the structure. 
Also others factors which could have contributed to 
the hull structural failure were over-stressing of the 
hull structure due incorrect loading and physical 
damage to the side structure during various 
operations.  
The fracture safety assurance of the ship’s hull has 
assumed increased importance from each type of 
destination ship. In the world commercial 
shipbuilding steels have been classified by the 
various bureau of shipping according to chemistry, 
strength level, and heat treatment (Hawthorne, 1981). 
The steel grades for ordinary-strength hull 
applications are from American Bureau Shiping 
(ABS) classification steels in Grade A, B, C, D and E 
and for American Society for Testing and Materials 
(ASTM) ASTM A36, ASTM A514. Test materials 
(plate) were obtained at random from several 
shipyards in an effort to characterize the products of 
current steel making practice.  
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The proportion of Grade A ship plate, a grade with no 
toughness requirement in large ships is 80-85% and 
up to 95% in small and intermediate sized vessels. 
The remaining material is usualy grade B, D and 

AH32/36 or DH32/36 for higher stressed areas 
(Health, 1997). 

 
 

Table 1. Minimum Charpy levels for steel ships 
Rules Grade 

A B 
(at 0°C) 

D 
(at 10°C) 

E 
(at -40°C) 

AH32 
(at 0°C) 

DH32 
(at -20°C) 

EH32 
(at -40°C) 

AH36 
(at 0°C) 

DH36 
(at -20°C) 

EH36 
(at -40°C) 

ABS - 27 27 27 34 34 34 34 34 34 
DNV -  27 27 31 31 31 34 34 34 
Lloyds - 27 27 27 31 31 31 34 34 34 

 
The International Association of Classification 
Societies (IACS) classification rules assume the 
minimum Charpy levels for Grades B, C and D to be 
27 J at 0°C, -10°C and -40°C respectively. Grade A 
has no requirements but 27 J at 10°C is often 
assumed (IACS, 2008) is given in Table 1. 
In steel-related research, which is also the focus of 
this study, ANN has been used widely to understand 
a wide range of problems including mechanical 
properties (Nazari, 2011), (Nazari et al., 2011), 
toughness of welding alloys (Metzbower et al., 2001), 
metal deformation (Lightfoot et al., 2005), surface 
texture (Tugrul and Yigit, 2005), (Fredj and Amamou 
2006) and phase transformations (Khalaj et al., 2012). 
Also we can applyed ANN to decide the composition 
of steel for achieving a particular hardness (Trzaska 
and Dobrzanski, 2005).  
The identification of properties of unknown material 
in the material testing laboratory requires heavy 
investment and also it is very time consuming. The 
use of simulation software in conducting experiments 
and prediction of properties of material will reduce 
the cost. The application of neural network modeling 
for evaluation of the effect of the alloying elements in 
predicted UTS and microhardness on naval steels is 
presented.  
The developed ANN-1 and ANN-2 models can also 
be employed for simulations of the relationship 
between mechanical property and the chemical 
composition of naval steel. This can be done in the 
entire range of concentrations of the main alloying 
elements occurring in naval steels taken as data set. 
Applications of the presented method enables a 
scientist to make free analyses of the effect of the 
alloying elements occurring in processing condition 
also using only computer simulation, without having 
to carry out additional and expensive experimental 
investigations. 
In this research, ANNs has been employed to 
determine ultimate tensile strength and the 
microhardness. ANN has been used to determine the 
ultimate tensile strength as a function of fourteen 
alloying elements (C, Si, Mn, P, S, Al, Ti, V, Cu, Ni, 
Cr, Mo, Nb, and N2). The theory behind the ANN 
configuration and the performance with regard to 
high-strength low-carbon steels is discussed in the 

next sections. More precisely, using the experimental 
data of 63 naval steels, the ANN-1 has been 
developed to predict the ultimate tensile strength and 
the ANN-2 has been developed to predict 
microhardness for a given set of input variables 
mentioned above. 
 
2. ARTIFICIAL NEURAL NETWORK THEORY 
 
Neural networks find their origin in biological 
science. However, the basis of that has been extended 
to artificial neural networks, which is the general 
terminology used to describe the mathematical 
models.  
McCulloch and Pitts (McCulloch and Pitts, 1943) 
defined artificial neurons for the first time and 
developed a neuron model. In 1958 Frank Rosenblatt, 
an American psychologist, proposed the perceptron, a 
more general computational model than McCulloch–
Pitts units (Rojas, 1996). The essential innovation 
was the introduction of numerical weights and a 
special interconnection pattern. In the original 
Rosenblatt model the computing units are threshold 
elements and the connectivity is determined 
stochastically. Learning takes place by adapting the 
weights of the network with a numerical algorithm. 
Rosenblatt’s model was refined and perfected in the 
1960s and its computational properties were carefully 
analyzed by Minsky and Papert (Minsky and Papert, 
1969). McCulloch and Pitts’ network formed the 
basis for almost all later neural network models, as in 
Figure 1. 
 

 
Fig. 1 Architecture of neural network, [Ince, 2004] 

 
Their adaptive nature is a very important feature of 
these networks, where “learning by example” 
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replaces “programming” in solving problems. This 
feature makes such computational models very 
appealing in application domains where one has little 
or incomplete understanding of the problem to be 
solved but where training data is readily available 
(Somkuwar, 2012). 
The basis of a neural network is shown in figure 1 is 
composed of five main parts: the inputs xi in the first 
layer of neurons, weights Wij accepted by each 
neuron, sum function, activation function (purelin 
function, log-sigmoid or tangential function) and the 
outputs Oj. 
Inputs are information that enters the neuron from 
other neurons of from external world. Weights are 
values that express the outcome of an input set or 
another process element in the preceding layer on this 
process element. 
Sum function is a function that calculates the effect of 
inputs and weights completely on this process 
element. This function computes the net input that 
approaches a neuron (Beale et al., 2013). The 
weighted sums of the input components (net)j are 
calculated using the below equation as follows: 
 
(net)j=∑Wijxi+b                                                         (1) 
 
where (net)j is the weighted sum of the jth neuron for 
the input received fromthe preceding layer with n 
neurons, Wij are the interconnections weights 
between the j-th neuron in the previous layer, xi is the 
output of the ith neuron in the previous layer (Beale 
et al., 2013), b represent the bias for the neuron and 
have a fix value as internal addition. Activation 
function is a function that processes the net input 
obtained from sum function and determines the 
neuron output. In general for multilayer feed-forward 
models as the activation function, sigmoid activation 
function is used. The output of the jth neuron (out)j is 
computed using Eq. (1) with a sigmoid activation 
function as follows (Hopfield, 1982). 
 
Oj=f(net)j=1/(1+e-α(net)

j)                                            (2) 
 
where α is constant used to control the slope of the 
semilinear region. The sigmoid nonlinearity activates 
in every layer except in the input layer (Beale et al., 
2013). The sigmoid activation function represented 
by Eq. (2) gives outputs in (0, 1).  
Neural networks consist of a large class of different 
architectures. The most useful neural networks in 
function approximation are Multilayer Layer 
Perceptron (MLP) and Radial Basis Function (RBF) 
networks. 
A typical architecture of a multilayer perceptron 
neural network is composed of the following 
components: 

• one input layer that receives signal from the 
environment; 
• one or more outputs layer that conveys the signals 
to the environment;  
• one or more hidden layers that keep some input and 
output signals within the network itself. 
A typical architecture of a multilayer perceptron 
neural network is composed of the following 
components: 
• one input layer that receives signal from the 
environment; 
• one or more outputs layer that conveys the signals 
to the environment; 
• one or more hidden layers that keep some input and 
output signals within the network itself. 
Figure 2 shows a typical architecture of a multilayer 
perceptron neural network with an input layer, two 
hidden layers and one output layer.  
 

 
Fig. 2 The architecture of multilayer percepton neural 

network, [Nazari, 2012] 
 
Many algorithms exist for determining the network 
parameters. In neural network literature the 
algorithms are called learning or teaching algorithms, 
in system identification they belong to parameter 
estimation algorithms. The most well-known are 
back-propagation and Levenberg-Marquardt 
algorithms. Backpropagation algorithm, one of the 
most well-known training algorithms for the 
multilayer perceptron, is a gradient descent technique 
to minimize the error for a particular training pattern 
in which it adjusts the weights by a small amount at a 
time (Rojas, 1996). For small- and medium-sized 
networks and patterns, the Levenberg–Marquardt 
algorithm is remarkably efficient and strongly 
recommended for neural network training (Yu and 
Wilamowski, 2011). 
The procedure of teaching algorithms for multilayer 
perceptron networks consist in: 
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a. Defined the structure of the network. In the 
network, it is necessarily to choose activation 
functions and to initialize weights and biases. 
b. We define the parameters associated with the 
training algorithm like error goal, maximum number 
of epochs. 
c. Call the training algorithm. 
d. At the end when the neural network has been 
determined, the result is first tested by simulating the 
output of the neural network with the measured input 
data. This is compared with the measured outputs. 
Final validation must be carried out with independent 
data. 
 
3. DATA COLLECTION 
 
The study of naval steels is important because naval 
steels represent by far the most widely used materials 
by shipbuilders, and can be manufactured relatively 
cheaply in large quantities to precise specifications. 
In our study naval steel is selected as the reference 
group for developing a database for material 
identification and prediction of property using its 
chemical composition. 
In the present investigation, the artificial neural 
network has been trained, tested and validated for 
prediction microhardness and ultimate tensile for 
naval steel using in shipbuilders.  
For this purpose, the experimental data from 
Constantza shipbuilder of A36, ASTM 514 
(Higashida et al., 1978), A710 (Trzaska and 
Dobrzanski, 2005), Grade B (Health and Safety 
Executive, 1997), Grade D (Lightfoot et al., 2005) 
and Grade E (Jesseman and Schmid, 1979) steels 
with different chemical compositions have been used. 
The input variables of the ANN modeling are the 
weight percent of alloying elements, carbon 
equivalent. These parameters along with their range 
have been summarized in Table 2. 
 
Table 2. The range of the input and the output parameters 

 in ANN model 

Parameters Minimum Maximimum Mean Standard 
deviation 

Input 

C (wt%) 0.05 0.27 0.166508 0.043558 

Si (wt%) 0.008 0.4 0.208857 0.131653 

Mn (wt%) 0.42 1.58 1.112619 0.400342 

P (wt%) 0 0.12 0.012683 0.016905 

S (wt%) 0 0.025 0.006492 0.00671 

Al (wt%) 0 0.053 0.026079 0.021267 

Ti (wt%) 0 0.1 0.00681 0.016375 

V (wt%) 0 0.042 0.002381 0.006124 

Cu (wt%) 0 1.3 0.084968 0.277384 

Ni (wt%) 0 0.9 0.066508 0.195012 

Cr (wt%) 0 0.51 0.022603 0.065089 

Mo (wt%) 0 0.2 0.011302 0.028747 

Nb (wt%) 0 0.06 0.009032 0.016282 

N (wt%) 0 0.009 0.003189 0.00374 

Output 

UTS [MPa] 368 938 502.381 84.63421 

 
4. ANN MODEL CONSTRUCTION 
 
Two ANN modeled in this research. The input layers 
has fourteen neurons for every ANN and the 
parameters are given in Table 3 and 4. 
 
Table 3. The Neural Networks values  used in ANN model 
1 
Parameters ANN 

Number of input layer units 14 
Number of hiden layers 2 
Number of first hidden layer units 12 
Number of second hidden layer units 9 
Number of output layer units 1 

 
The values for input layers were carbon weight 
percent (C), silicon weight percent (Si), manganese 
weight percent (Mn), phosphorous weight percent 
(P), sulfur weight percent (S), aluminum weight 
percent (Al), titanium weight percent (Ti), vanadium 
weight percent (V), copper weight percent (Cu), 
nickel weight percent (Ni), chromium weight percent 
(Cr), molybdenum weight percent (Mo), niobium 
weight percent (Nb), nitrogen weight percent (N) and 
the carbon equivalent weight (Ceq), based upon the 
International Institute of Welding equation (Eq. 3).  
 
Table 4. The Neural Networks values  used in ANN model 
2 
Parameters ANN 

Number of input layer units 14 
Number of hiden layers 2 
Number of first hidden layer units 7 
Number of second hidden layer units 5 
Number of output layer units 1 

 
Also we compute the carbon equivalent, based upon 
the chemical portion of the Ito-Bessyo carbon 
equivalent equation (Pcm) (Eq. 4). 
The carbon equivalent Ceq as determined from the 
ladle analysis in accordance with the following 
equation: 
 
Ceq=C+Mn/6+(Cr+Mo+V)/5+(Ni+Cu)/15             (3) 
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The cold cracking susceptibility Pcm as calculated 
from the ladle analysis in accordance with the 
following equation is: 
 
Pcm=C+Si/30+(Mn+Cu+Cr)/20+Ni/60+Mo/15+V/10+5 (4) 
 
The neurons of neighboring layers are completely 
interconnected by weights.  
Finally, the output layer neurons produce the network 
prediction as a result.  
From the total 63 gathered date, 40 were randomly 
selected and trained by the network, 23 data were 
used for validation and the other 23 data were used 
for testing the network. In this study, the back-
propagation training algorithm has been utilized in 
one feed-forward hidden layer.  
The nonlinear sigmoid activation function was used 
in each the hidden layer and purelin in the neuron 
outputs at the output layer. The trained model was 
only tested with the input values, and the predicted 
results were close to experiment results. 
 
5. RESULTS AND DISCUSSION 
 
5.1 The effects of chemical composition  
The parameter that has been most used in practice to 
measure steel weldability is the carbon equivalent 
(Ceq) equation (3), where good weldability is in 
general obtained by maintaining a low Ceq . 
 

 
Fig. 3 The variation of chemical compositions carbon 

content, carbon equivalent and weldability diagram for 
naval steels 

 
From the Figure 3 we conclude that all naval steels 
that we studied are good weldability. 
 
5.2. ANN Modeling with MATLAB 
Back-propagation multilayer feedforward ANNs (ANN-
1 and ANN-2) were created using the Neural Network 
Toolbox in Matlab 7 package. ANN-1 comprise the 
input layer, two hidden layer and the output layer, see 
Figure 4. 
 

 
Fig. 4 The ANN-1 model used in MATLAB 

 
Also ANN-2 comprise the input layer, two hidden layer 
and the output layer, see Figure5. 
 

 
Fig. 5 The ANN-2 model used in MATLAB 

 
5.3 Training and Validation 
The ANNs are trained by introducing a set of 
examples of proper network behaviour to the ANNs. 
During training, the learning rule is used to iteratively 
adjust the weights and biases of the network in order 
to move the network outputs closer to the target 
values by minimizing the network performance 
indicator.  
The Levenberg-Marquardt training algorithm, which 
has a higher rate of convergence, is used for the 
training of both ANN-1 and ANN-2. 
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Fig. 6. Correlation of the measured and predicted ultimate 

tensile strength values in (a) training, (b) validation, (c) 
testing sets for ANN model 1 

 
Figure 6 presents the comparison between measured 
and predicted results for ultimate tensile strength 
levels for naval steels. We consider that this approach 
can be very useful in modeling the mechanical 
properties of naval steels, because there is a 
concordance between the predicted and measured 
values indicated. The prediction values match the 
measured amounts very well. This clearly indicates 
the accurate function of the trained ANN-1 in 
predicting the ultimate tensile strength of naval steels. 
In Figure 6a, b and c, we present the training, 
validation and testing predicted UTS results of ANN-
1 model, and these results are obtained from 
experimental studies. The linear least-square fit line, 
its equation and the R2 values are shown also in these 
figures for the training, validation and testing data. It 
can see in Figure 6, the values obtained from the 
training, validation and testing in ANN-1 model are 
very close to the experimental UTS data results. Also 
the result of testing phase in Figure 6 shows that the 
ANN-1 model are capable of generalizing between 
input and output variables with reasonably good 
predictions. The best value of R2 is 99.5 % for testing 
set in the ANN-1 model. All of R2 values show that 
the proposed ANN-1 model are suitable and can 
predict UTS values very close to the experimental 
values. Knowing the relationship between ultimate 
tensile strength (UTS) and hardness HV (Pavlina, 
2008) given by equation: 
 
UTS=3.3*HV                                                           (5) 
 
and from all data of the specimens we have the 
experimental values of UTS and we compute, from 
equation (5), the microhardness values. 
 

 

 

 
Fig. 7. Correlation of the measured and predicted HV 

microhardness values in (a) training, (b) validation and (c) 
testing sets for ANN model 2 
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In Figure 7 a, b and c, we present the training, 
validation and testing predicted HV microhardness 
results of ANN-2 model. 
The linear least-square fit line, its equation and the R2 
values are shown also in these figures for the training, 
validation and testing data.  
It can see in Figure 7, the values obtained from the 
training, validation and testing in ANN-2 model are 
very close to the computed microhardness HV data 
results. Also the result of testing phase in Figure 7 
shows that the ANN-2 model are capable of 
generalizing between input and output variables with 
reasonably good predictions. The best value of R2 is 
99.25 % for testing set in the ANN-2 model. 
All of R2 values show that the proposed ANN-2 
model are suitable and can predict microhardness 
values very close to the computed values. 
 
6. CONCLUSIONS 
 
Two artificial neural network models (ANN-1 and 
ANN-2) were developed to predict the ultimate 
tensile strength and microhardness of naval steels. 
The values predicted in the presented models are in 
very good agreement with those measured by 
experimental results, and computed respectivelly. 
Therefore, the presented ANN models can be used to 
predict accurately the ultimate tensile strength of 
naval steels and microhardness also. ANN models 
will be valid within the ranges of variables. 
 
Note 
“This paper was presented at the ModTech2013 
International Conference -Modern Technologies in 
Industrial Engineering, held between June 27-29, 
2013 in Sinaia, Romania”. 
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