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Abstract : The main energy that uses this type of turbine is 
the kinetic energy of water. The rotor is the principal 
element of turbine.  The rotor is a propeller that captures a 
moving fluid energy. In this type of propeller, the fluid 
flow moves around it so that the forces are the result of 
direct action of the fluid on the blades.  Normal force is an 
axial force, to be taken over by the supporting structure. 
Tangential component is the sense of an active force that 
produces torque on the propeller shaft.  
This component tends to increase the speed of the 
propeller, the propeller being able thus be used as a power 
source. In other words turbine function according to this 
principle is a power plant.  
Propeller calculation aims to determine the diameter of the 
propeller and propeller shaft torque. Propeller diameter is 
determined taking into account the imposed power and 
fluid flow speed and the torque is determined by the action 
of fluid flow on the propeller blades.  
Therefore the type of profile chosen for the construction of 
aero-hydrodynamic blade will decisively influence the 
performance of the propeller.  
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1. INTRODUCTION  

 
This type of turbine interacts with the water, 
capturing part of its kinetic energy and converting it 
into usable energy. The present energetic context 
leads to the research of renewable energy sources and 
the recuperation of kinetics energy from water 
currents is particularly interesting (Kulunk&Yilmaz, 
2009). Although current research on the possibilities 
to capture the kinetic energy of water is not published 
design methodology for such turbines. Design 
methodology used in this work is the same as that of 
wind turbines. The principal element of turbine is the 
rotor, which is a propeller that captures a moving 
fluid energy. The forces for this type of propellers are 
due to direct fluid flow over the blades.  Resultant 
force of this interaction can be decomposed into a 
normal and a tangential component.  Normal force is 
an axial force, pushing the positive, to be taken by the 
supporting structure. Tangential component is an 
active force that produces torque on the propeller 
shaft. This component tends to increase the rotational 
speed of the propeller so that the propeller can be 

used as a power source.  Calculation propeller has 
two goals :  
 determination of the propeller diameter D. This size 
is determined from imposed power and speed of fluid 
flow. 
 calculating torque from the propeller shaft. Torque 
is determined by the action of fluid flow on the 
propeller blades. From this point of view the 
hydrodynamic profile type used for blades 
construction, will decisively influence the propeller  
performance.  
 
2. GENERAL INFORMATION  
 
Design method allows the establishment of the 
propeller geometry and hydrodynamic performance 
was found after a profile that will be used in blade 
construction. The method aims at establishing the 
turbine shaft torque and power coefficient. Axial 
rotor theory is not unitary, it appears that a mix of 
theoretical models and variants that overlap in some 
areas. The difference between models is generated by 
assumptions simplifying  and approximations from 
which the general three-dimensional movement can 
be replaced by a simple motion, uniquely 
characterizes the essence of core theory. Refer to a 
series of approximations,  namely : 
-Models with infinite number of blades, by neglecting 
the periodicity leads to an axially symmetric flow. 
Models with infinite number of blades are specific for 
free propeller where free end of the blade determine 
the three-dimensional effects with negligible 
intensity ; 
-The ideal propeller, characterized by axially 
symmetric motion without taking into account the 
tangential velocities ;  
-The imaginary rotor characterized by axially 
symmetric motion considering and the tangential 
velocities. It is found that neglecting the periodicity 
of the motion is to replace real rotor blades with an 
infinite number of rotor blades having a finite number 
of negligible thicknesses. Generated surface will 
confuse the rotor. When crossing the area, both 
velocities and pressures will show how 
discontinuities.  
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Rotor with a finite number of blades can be treated 
with an active disk. From this point of view, active 
disk model will comprise the model of ideal propeller 
and the model of imaginary rotor. The propeller is an 
active disk that captures the kinetic energy part of the 
current. It is placed in a stream of fluid whose flow 
velocity at infinity upstream is V∞= V∞ i1. 

 

3. MATHEMATICAL MODEL 
 

From the above results that the motion around an 
ideal propeller can be characterized as follows:  
- axially symmetric motion is no tangential speed;   
-velocities have the form of absolute speeds are 
scaling the components : 
 

v1(x)=u∞+u1(x) 
                        v2(x)=u2(x)                                 (1) 

v3(x)=u3(x) 
 

- pressure variation across the active disk is the same 
at any point and velocity is continuous. 
 

 
Fig.1 Geometry of a stream tube 

 
Start from the equations of continuity and momentum 
we have relations : 

 
 ߩ ൏ ,Ԧݒ ሬ݊Ԧ  ݀ܽ ൌ 0      

   Ԧݒߩ ൏ ,Ԧݒ ሬ݊Ԧ  ݀ܽ ൌ  ߩ Ԧ݂݀ݒ െ  ܲ ሬ݊Ԧ݀ܽ  ܨ      (2) 
 
Consider an elementary subdomain determined by 
two current neighboring areas d=d-Ud+ , as can be 
seen in figure 2.  
 

 

Fig.2. Subdomain work item 

 
From the expression of the continuity equation 
we have:  

ஶݑߩ כ ଵݎଵ݀ݎߨ2 ൌ ஶݑ൫ߩ  ,ଵሺ0ݑ ݎ݀ݎߨሻ൯2ݎ ൌ
ஶݑ൫ߩ     ,∞ଵሺݑ  ଶ                 (3)ݎଶ݀ݎߨଶሻ൯2ݎ

 
The momentum equation applied to ( d-) şi (d+) 
resulting in projection after  0x1:    
    

െݑߩஶ
ଶ ଵݎଵ݀ݎߨ2  ஶݑ൫ߩ  ,ଵሺ0ݑ ሻ൯ݎ

ଶ
    ൌݎ݀ݎߨ2

ଵݎଵ݀ݎߨ2 ஶܲ െ ܲሺെ0,              (4)ݎ݀ݎߨሻ2ݎ
 

െߩ൫ݑஶ  ,ଵሺ0ݑ ሻ൯ݎ
ଶ

ݎ݀ݎߨ2  ஶݑ൫ߩ 

,∞ଵሺݑ ଶሻ൯ݎ
ଶ

כ ଶݎଶ݀ݎߨ2 ൌ ܲሺ0, ݎ݀ݎߨሻ2ݎ െ

ଶܲሺݎଶሻ כ  ଶ        (4`)ݎଶ݀ݎߨ2
 
With previous relationships we can determine the 
axial force (5) for a elementary rotor which was 
obtained by intersection between (d) domain and the 
disc (S0):      

 
݀ܶሺݎሻ ൌ ൫ܲሺ0, ሻݎ െ ܲሺെ0, ሻ൯ݎ כ ݎ݀ݎߨ2 ൌ  

∞ݑ൫ߩ  ,ଵሺ0ݑ ,∞ଵሺݑሻ൯ݎ ଶሻݎ כ  ݎ݀ݎߨ2 

ଵݎଵ݀ݎߨ2ܲ∞ െ ଶܲሺݎଶሻ2ݎߨଶ݀ݎଶ           (5) 
 
From Bernoulli`s equation: 
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we can find the pressure variation for radius r0: 
 

ܲሺ0, ሻݎ െ ܲሺെ0, ሻݎ ൌ ଶܲሺݎଶሻ െ ஶܲ 

ߩ ൬ݑஶ 
ଵ

ଶ
,∞ଵሺݑ ଶሻ൰ݎ ,∞ଵሺݑ  ଶሻ       (8)ݎ

and the variation of specific energy  for the same 
radius : 

݁ሺ0, ሻݎ  ݁ሺെ0, ሻݎ ൌ
1
ߩ

ሺ ଶܲሺݎଶሻ െ ∞ܲሻ 

 ൬ݑ∞ 
ଵ

ଶ
,∞ଵሺݑ ଶሻ൰ݎ ,∞ଵሺݑ  ଶሻ              (9)ݎ

 
It requires:  ଶܲሺݎଶሻ ൌ ஶܲ.  This assumption is natural 
for real propeller but is difficult to analyze in case of 
ideal propeller  because it reaches the  borders of the 
model. In that case we can write the variation of 
specific energy: 
 

݁ሺ0, ሻݎ  ݁ሺെ0,  ሻݎ

ൌ ൬ݑஶ 
ଵ

ଶ
,∞ଵሺݑ ଶሻ൰ݎ ,∞ଵሺݑ  ଶሻ              (10)ݎ

 
Elementary turbine power is: 
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்݀ܲሺݎሻ ൌ ݀݉ሺݎሻ൫݁ሺെ0, ሻݎ െ ݁ሺ0,  ሻ൯ݎ

ൌ െߩ൫ݑஶ  ,ଵሺ0ݑ  ݎ݀ݎߨሻ൯2ݎ

כ ൬ݑஶ 
ଵ

ଶ
,∞ଵሺݑ ଶሻ൰ݎ ,∞ଵሺݑ  ଶሻ              (11)ݎ

 
Speed real movement of fluid from the propeller trail 
has three components: axial, radial and tangential. 
Momentum theory is based on the assumption that 
there is no tangential velocity (no movement of 
rotation) and replaced the propeller by an active disk. 
This disc produces rapid increase of pressure in fluid 
but not change the axial component of velocity by 
crossing. The described method is developed on the 
principles of mass, momentum and angular 
momentum. This method initiated by Jukovski takes 
into account the speed rotation of the fluid that occurs 
due to propeller torque (Dumitrescu et al.,1990). This 
rotational motion is due to additional energy losses.  
 

 
Fig.3. Angular velocity distribution 

 
The existence of rotational motion involves filling the 
disk active role with the possibility to induce a 
tangential component of fluid velocity, other 
components remaining unchanged by the presence of 
disc.The increase in static pressure across the disc is 
determined by the appearance of the tangential 
component of velocity. If we note ω3, angular 
velocity of the fluid at infinity downstream, ω2 = ω, 
its value behind of the disk, and ω∞ = 0, the angular 
velocity before of the disk to infinity upstream , we 
have a picture of the angular distribution of speeds as 
you can see in the figure 3. Consider an elementary 
current tube annular intersecting the disk as circles of 
radius r and r+dr, Vx and Vr are respectively the axial 
and radial components of fluid velocity.Noting P1 and 
P2  the static pressures on the faces of the disc with 
radius r, the axial velocity component V3x (V3r=0), 
and with P3 pressure at infinity downstream to a 
radius r3 (see figure 4); where r3 is the distance 
between the propeller axis and the current line, who 
cut the disk at  distance r to axis. 
 

 

 

Fig.4. Basic characteristics and field 

 
Disc disturb of uniform axial flow at infinity 
upstream, namely an area in front of the disk fluid 
velocity has a radial and axial component. 
Applying the continuity equation between sections I 
and III  

2πr1dr1 V1a = 2πr3dr3V3a                            (12)    

 
if we customize our case: 

 
Vxrdr=V3xr3dr3 

 
and the angular momentum equation applied between 
sections II and  III we have that: 
 

ଵݎ
ଶ߱ሺ rଵ, ଵሻݔ ൌ ଷݎ

ଶ߱ሺ rଷ,  ଷሻݔ

ଶݎ߱ ൌ ߱ଷݎଷ
ଶ 

 
This latter relationship represent equality of angular 
momentum from the active disk with surface 
݀ܵ ൌ  and  angular momentum at infinity ݎ݀ݎߨ2
downstream to take into account the continuity 
equation : Vxrdr=V3xr3dr3  
 

ܯ݀ ൌ ߩ ௫ܸ߱ݎଶ݀ܵ- for section II 

ܯ݀ ൌ ߩ ଷܸ௫߱ଷݎଷ
ଶ݀ܵଷ, for section III 

݀ܵ ൌ and  ݀ܵଷ ݎ݀ݎߨ2 ൌ  ଷݎଷ݀ݎߨ2

 
Imposing equality between these two 
relationships have:  
 

௫ܸ߱ݎଶ݀ܵ ൌ ଷܸ௫߱ଷݎଷ
ଶ݀ܵଷ   

 
Hence considering the continuity equation: 

 
ଶݎ߱ ൌ ߱ଷݎଷ

ଶ 
 
Bernoulli`s equation applied in front and after 
propeller gives us:  
 

݄∞ ൌ ∞ 
1
2

ߩ ∞ܸ
ଶ ൌ ଵ 

1
2

ሺߩ ௫ܸ
ଶ  ܸ

ଶሻ 
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݄ଷ ൌ ଶ 
1
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ሺߩ ௫ܸ
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ଶ  ߱ଶݎଶሻ

ൌ ଷ 
1
2

ሺߩ ଷܸ௫
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ଶݎଷ
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how we as: 

 

 ݄ଷ െ ݄∞ ൌ ଶ െ ଵ 
ଵ

ଶ
 ଶ               (13)ݎଶ߱ߩ

 
This relationship shows that the total pressure 
variation across the disk is larger than the static 
pressure jump ∆ ൌ ଶ െ  ଵ with a quantity that
represents the kinetic energy of rotational motion 
appeared in the fluid due to propeller torque. 
From the above expressions we also: 
 

∞ െ ଷ ൌ
1
2

ሺߩ ଷܸ௫
ଶ െ ∞ܸ

ଶሻ 
1
2

ଷ߱ߩ
ଶݎଷ

ଶ െ
1
2

 ଶݎଶ߱ߩ

െ∆(14)                                      
 

Notice that, generally because of rotational 
movement, the pressure in the trail is less  than the 
external pressure ∞. Now we compare the movement 
to the propeller blades rotate with angular velocity Ω, 
then upstream up to the front disk, relative angular 
velocity will be Ω and decrease in Ω – ω behind the 
disk and Ω-ω3 to infinity downstream.If we assume 
that the relative motion around the blade is the 
potential and conserved component velocity of the  
radial plane then Bernoulli`s equation gives the static 
pressure increase. 
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2

ሺΩ െ ߱ሻଶݎଶ 
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ω

2
ሻ߱ݎଶ 

 
Considering this relationship and the fact that 
ଶݎ߱ ൌ ߱ଷݎଷ

ଶ  relationship ∞ െ  :  ଷ  becomes
 

∞ െ ଷ ൌ
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2

ሺߩ ଷܸ௫
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ଶሻ 
1
2

ଷ߱ߩ
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where Δp is given by relation (15).Relationship to 
static pressure variation of the sections  (I) and  (III)  
is: 
 

∞ െ ଷ ൌ
ଵ

ଶ
ሺߩ ଷܸ௫

ଶ െ ∞ܸ
ଶሻ െ ଷݎଷ߱ߩ

ଶ ቀΩ െ
ωయ

ଶ
ቁ    (17) 

 

To calculate the torque  is considered a blade element 
between rays r and r + dr. Below is determined forces 
acting on the elementary blade which are caused by 
hydrodynamic action of fluid flow on the propeller. 
 

 
Fig.5. Blade cross-section diagram used to derive forces 

 

Stream of fluid moving with constant velocity W, 
interacts with a blade element  under a certain angle 
of incidence. This interaction generates a elementary 
hydrodynamic force dR which decomposes into two 
components elementary (drag ܴ݀ோ and lift ܴ݀ ) (see 
figure 5). 
 

    ܴ݀ ൌ
ଵ

ଶ
 (18)                     ݎܹଶܿ݀ܥߩ

ܴ݀ோ ൌ
1
2

 ݎோܹଶܿ݀ܥߩ

 
The decomposition of these forces in a direction 
parallel to the axis of the rotor giving elementary 
axial force  dTa 

 
݀ ܶ ൌ ܴ݀ܿߜݏ  ܴ݀ோ(19)                    ߜ݊݅ݏ 

 
By decomposing drag and lift forces in the plane of 
rotation (the direction of tangential velocity) we can 
determine the elementary tangential force dTu : 
 

݀ ௨ܶ ൌ ܴ݀ߜ݊݅ݏ െ ܴ݀ோܿ(20)                    ߜݏ 
 
The blades are built on a known hydrodynamic 
profile and following are known profile 
characteristics, CP = CP(α), and, CR = CR(α). The 
profile coefficient μ is defined by the relationship 
 

ߤ ൌ ߝ݃ݐ ൌ
ೃ

ು
                           (21) 
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Given equation (21) relationships (19) and (20) 
become: 
 

݀ ܶ ൌ
ߩ
2

ܥଶܹݎ݀ܿ
cosሺߜ െ ሻߝ

cos ߝ
       

(22) 

݀ ௨ܶ ൌ
ߩ
2

ܥଶܹݎ݀ܿ
sin ሺߜ െ ሻߝ

cos ߝ
 

 
δ  is angle between the absolute velocity W and the 
tangential velocity u. Consequently contribution of 
blade elements located between rays r and r + dr for 
the total axial force dTta and torque dM will be:  
 

݀ ௧ܶ ൌ ݊݀ ܶ ൌ ݊
ఘ

ଶ
ܥଶܹݎ݀ܿ

ୡ୭ୱሺఋିఌሻ

ୡ୭ୱ ఌ
             (23) 

 

ܯ݀ ൌ ݀ݎ݊ ௨ܶ ൌ ݊
ఘ

ଶ
ܥଶܹݎ݀ܿݎ

ୱ୧୬ ሺఋିఌሻ

ୡ୭ୱ ఌ
              (24) 

 
In the above relations, c is chord of profile, and n is 
the number of blades. Power coefficient Kp is defined 
by the relationship: 
 

ܭ ൌ
݀ ்ܲ

݀ ܲ
ൌ

ܿ݊߱ሺ ஶܸ
ଶ  ߱ଶݎଶሻ

ߨ2 ஶܸ
ଷ ܥ

sinሺߜ െ ሻߝ

cos ߝ
 

 
ൌ ଶሺ1ߣ  ݇ሻሺ݄ െ 1ሻ                        (25) 

 
where dPT  is the power output of the turbine rotor 
located between rays  r and r+dr, and dPC  is 
elementary power developed by fluid flow on the 
same surface; K is coefficient of axial velocity 
induced in the disk plane,  and h is coefficient of 
tangential velocity   induced in the disk plane. These 
coefficients will be determined later. It aims to 
optimize the power coefficient KP. The elementary 
turbine shaft torque is: 
 

ܯ݀ ൌ ݊
ߩ
2

ܥଶܹݎ݀ܿݎ
sinሺߜ െ ሻߝ

cos ߝ
ൌ 

߱ݎଷ݀ݎߨߩ ஶܸሺ1  ݇ሻሺ݄ െ 1ሻ                 (26) 

 
where W is the resultant current speed, and  
 

ߜ ൌ ݃ݐܿܿݎܽ
ఠሺାଵሻ

∞ሺାଵሻ
                       (27) 

 
E and G are dimensionless expressions : 
 

ܧ ൌ
ିଵ

ାଵ
ൌ

ು ୱ୧୬ሺఋିఌሻ

ସగ ୡ୭ୱ ఌ ୱ୧୬ ଶఋ
                      (28) 

 

ܩ ൌ
ሺଵିሻ

ሺାଵሻ
ൌ

ು ୡ୭ୱሺఋିఌሻ

଼గ௦మఋ ୡ୭ୱ ఌ
                    (29) 

 
Making the ratio between E and G we have: 
 

ீ

ா
ൌ ߜሺ݃ݐܿ െ  (30)                      ߜ݃ݐሻܿߝ

The parameter Mo is defined with relation: 
 

ܯ ൌ
ா

ቀଵା
ഋ
ഊ

ቁሺ
భశೖ
భశ

ሻ
                             (31) 

 
Finally lift coefficient CP can be determined in a 
section of profile with formula:  
 

ܥ ൌ
଼గሺଵିሻ௦మఋ ୡ୭ୱ ఌ

ሺାଵሻ ୡ୭ୱሺఋିఌሻ
                     (32) 

 
c is the chord of the blade profile in current section. 
For a given value of λ, KP power coefficient given by 
(25) passes through a maximum.  Impose extreme 
condition for Kp :  
 

ௗ

ௗ
ൌ 0                                      (33) 

 
Relation (33) leads to a cubic equation in respect to 
the variable k  
 

4݇ଷ െ 3݇ሺ ߣଶ  1ሻ  ଶߣ   1 ൌ 0              (34) 

 
After solving equation (34) to retain the solution that 
satisfies the condition 0 1K   . With value of K 
thus determined is defined coefficient of the 
tangential velocity : 
 

݄ ൌ  ට1 
మ

ఒమ                                   (35) 

 
power coefficient is defined by the relationship : 
 

ܭ ൌ ଶሺ1ߣ  ݇ሻ ቆට1 
ଵିమ

ఒమ െ 1ቇ                  (36) 

 

For a concrete example,V=0.358 [m/s], Λ=4.6, 
N=0.95 [W] turbine diameter is calculated : D=0.23 
[m]. Profile for achieving the blade is Eppler E 479  
In the figure below you can see the variation of lift 
coefficient : 
 

 
Fig.7 Lift Coefficient 

 
Lift coefficient provides information on the 
performance of selected profile. Also represented in 
figure 8 is the variation of drag coefficient. 
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Fig. 8 Drag coefficient 

 
As is apparent coefficient of resistance decreases with 
increasing radius. This leads to better aerodynamic 
performance. With these two coefficients  is defined  
solidity ratio (see figure 9): 
 

 
Fig. 9  Solidity profile 

 
In the next figure we can see the variation  of attack 
angle: 
 

 
Fig. 10 Angle of Attack 

 

 
Fig. 11 Power Coefficient 

 
Power coefficient is a measure of mechanical power 
transmitted from the turbine rotor for low-speed 
shaft. 
 

 
Fig. 12 Blade of the turbine 

 
Finally obtain blade for the turbine  as can be seen in 
figure 12. 

 
4. CONCLUSIONS 
 
Convert the kinetic energy of water currents, rivers or 
streams or the sea is a technology that does not 
require dams which are considered more advanced 
and less polluting. 
Design method used for wind turbines can be 
successfully applied in the case of water current 
turbines. 
Turbine design has been achieved considering 
constant fluid speed. Refer to the analysis and design 
studies on the possibility of hydrodynamic 
parameters for variable speed water. 
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