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Abstract: Machining is the most important and widely number of different models are examined and
used manufacturing process. As machining is verycompared to one another.

complex process, in recent years neural networledas |n this paper are discussed the most importansstep
modeling has been preferred modeling of machiningneyral network model development. Furthermore,
processes. This paper outlines and discusses eii@a  there are presented some guidelines for seledtiag t
and concept of neural netwo_rk modeling c_)f maCh'n'ngtraining parameters of multi-layered perceptron
processes. Furthermore this paper discusses thﬁ\/ILP) trained by backpropagation (BP) algorithm
methodology of developing neural network model @l w and for selecting neural network architecture. The

as proposing some guidelines for selecting the owtw A . : .
training parameters and network architecture. Forguldellnes are based on literature reviews, engliric

illustration purpose, simple neural prediction moéer  'ules and previous experience. The methodology of
cutting power was developed and validated. neural network modeling was illustrated on a simple

Key words. Modeling, machining, neural networks. example for modeling of cutting power.
1. INTRODUCTION 2. MODELING OF MACHINING
PROCESSES

Modeling of machining, aimed at better ] o )
understanding of process, has attracted manj the field of machining very complex and highly

researchers in past years. As a result, modeling dtonlinear processes are involved. Machining
machining processes has been examined froRfocesses are dependable on various known but also
different points of view and using different unknown parameters as well as on theirs interagtion

techniques. Great number of parameters, partiallyf "€ machining process is performed in the specific
understood relations between parameters, compleXiPo-mechanical system consisting of five basic
multidimensional, non-linear and stochastic nanfre 9roups of input parameters with associated elements
machining make modeling of machining processes &19ure 1).

considerable task.

Neural networks (NNs) possess many characteristic _“Xliﬁif{iifﬂal
which make them suitable for addressing such tasks mmicrostructure
universal  function  approximation  capability, :g;;ge;gi;;zf;:m

resistance to noisy or missing data, accommodatio msurface roughness
of multiple nonlinear variables for unknown

interactions, good generalization capability, aiapt o T | CUTTINGTOOL |
nature etc. In past 20 years a number of researche Jis-mie o . i
successfuly applied NN based modeling of various smhincdssign | | MACHINING = L reparaton
machining processes. The most of the models are f¢ """ 4V N nuedine
surface finish and dimensional deviation, tool &fed ™

tool wear and for cutting forces, although there ar INTERFACE CUTTING

some for other specific purposes. Despite thetfat iR CONDITIONS

NNs have been widely implemented in many area: R pen :g;g;gmut

during the past years, there are still certaindssu mfeed rate

regarding the development of an optimal model. lUnti

now there have been no clear rules that could seve Fig. 1. Machining input parameters

a basis to be followed in developing the adequate
model. The most typical method followed is aIn machining processes practically any parameter ca
repetitive trial-and-error method, where a largebe varied in a wide range. Nevertheless, in many
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cases, the true relationship between these paresmetélhis type of modeling is often called direct modgli

and the machining process is not fully understoodNNs are massive parallel systems made up of simple
The machining process consists of eight groups oprocessing units (neurons) there are linked with

output parameters (figure 2). weighted connections where the knowledge
] possessed by the networks is held. The diagrara for
IRIGES, JOKdNES; network with a single neuron is shown in figure 3.
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Fig. 2. Machining output parameters

For the past 50 years metal cutting researchers hay
developed many modeling techniques including
analytical techniques, slip-line solutions, empitic

approaches, finite element techniques etc. Theze ar
many different machining operations and for each of

them different aspects can be modelled and differenyNs are characterized by their topology, weight
techniques for modelling can be used. Consequentlyectors, and activation functions there are used in
there exist a wide variety of models dealing in onenjgden and output layers of the netwdFke neurons
way or another with machining operations. Modelsin, the input layer are fed with input data. Eachroe

are classified according to: type of operation, Mmai gyms its inputs, with one input per neuron in tigut
purpose, predicted quantity, time of applicatioml an |ayer but many inputs per neuron in the hiddenraye
modeling technique. Taking into account the mainThe pias (threshold) is used to scale the inpua to
purpose the models can be classified as: des@iptivyseful range to improve the convergence propesfies
predictive, and learning. Modelling technique thethe neural network. Each neuron transfers the data,
models can be classified as: empirical, semigccording to a transfer function (activation fuoni
empirical, and physical (Van Luttervelt, 2001). to all the elements in the next layer. Howeverheac
Machining processes does not permit pure analyticgheuron receives a different signal due to different
physical modeling. Recently, semi-empirical modelsconnection weights between the neurons. Finally, th
developed using NNs have become the preferregytput of each neuron in the output layer is comgar
trend which is applied by most researchers. Prigdict to the desired output. In order to minimize the
models, ~which are capable of predicting gifference between these outputs, weights of the
quantitatively the influence of the magnitude gfub  connections between the neurons must be adjusted.
parameters on the magnitude of output parameter§here are numerous methods of determining the

Fig. 3. Structure of artificial neuron (Karayel,(8)

are of special importance in the machining area.  weights of the connections. Especially there aelus
some variations of back propagation (BP) learning
3. MODELING OF MACHINING algorithm, conjugate gradient algorithms, quasi-
PROCESSES USING NEURAL Newton algorithms and Levenberg—Marquardt (LM)
NETWORKS method. A NN is trained using some learning

(training) algorithm with a number of data to aeriat

In recent years, modeling techniques using NNs havan optimum set of weights and tested with other set
attracted attention of practitioners and reseascherof data. Once trained, the NN can be used for
The learning ability of nonlinear relationship in a prediction of output parameters.

cutting operation without going deep into the The most used NNs for modelling of machining
mathematical complexity, or prior assumptions an th processes are: MLP also known as multilayer
functional form of the relationship between inputs,feedforward networks, adaptive resonance theory
in-process parameters and outputs makes NN amodels (ART), self-organizing maps (SOM), radial
attractive alternative choice for many researchers basis function network (RBFN), etc. The most
model cutting processes (Mukherjee & Ray, 2006)popular NN for modeling machining processes is
Generally, any parameter from the figure 1 can béMLP with BP training algorithm. MLP BP is adopted
regarded as machining process input parametere whiby most researches since MLP models are general-
any of the parameters from the figure 2 can begurpose models and have good generalization
selected as a machining process output parametarapabilities. The MLP BP networks are most popular
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in practice due to their easiness to understand anafchitecture requires determining the number of
implement. The standard BP technique withhidden layers, the number of hidden neurons and
momentum is adopted by most researchers. MLP usegsansfer functions of the neurons in hidden angwaitut
BP algorithm for training the network in a supeeds layer. First two parameters especially affect the
manner. BP algorithm is a steepest descent methodyerall performance of NN i.e. generalization dpili
where weight values are adjusted in an iterativeof the NN model.

fashion while moving along the error surface tavarr - Number of layers. The role of the hidden layers is to

at minimal range of error, when input patterns aremap complicated input-output relationships between
presented to the network for learning the netwdrk. network inputs and outputs. Until now, no general
complete description of the BP algorithm can bemethod for determining the number of hidden layers
found in numerous sources, including (Haykin,was proposed. Increasing the number of hiddendayer
1999). Figure 4 shows three-layered MLPincreases the network’s processing power, but en th
architecture based on the input, hidden and outpuither hand the training time is increased alond wit

layers for modeling machining process. The firstmore required training examples. Reviewing the
layer is an input layer where external data ardjterature it could be seen that at most two hidden
received. The last layer, separated from the inpufayers are used. When talking about using NN in
layer by one or more intermediate layers called thenachining process modeling and prediction, most
hidden layers, computes the network outputs. authors used only one hidden layer.

Number of hidden neurons. The issue of
determining the optimal number of hidden neurons is
of crucial importance since the number of neurons
determines the “expressive power” of the network.
The number of neurons in the hidden layers
influences the generalization ability of the netkor
Adding hidden neurons always results in reductibn o
the training error, but error decreasing or indreas
- P ; on test is in direct relationship with actual numbé
Fig. 4. MLP topology for modeling machining process ~ hidden neurons. A typical approach would be tot star
with a small number of hidden neurons and to diyght
According to the network structure as given inriigd, ~ increase the number until no significant improvemen
decision variables in modeling machining problemi¢go N model performance is achieved. Using the NN
be assigned as the set Of input neurons SUCh aalﬂm mOdeI W|th m|n|ma| nL.Imber Of h|dden neurons |e
of cutting speed, feed rate, depth of cut, etcpiese  Simplest architecture is always desirable for both
variables are assigned as the set of output neschsas ~ Practical and theoretical reasons. It should be

INPUT LAYER HIDDEN LAYER OUTPUT LAYER

Cutting force, tool wear, Surface roughness’ etc. Underlined that the number Of neurons in the h|dden
layers is data dependent. If the network has more

4. MODELING METHODOLOGY OF degrees of freedom (the number of connection
NEURAL NETWORKS weights) than the number of training samples, the

network is mathematically undetermined. The

Development of NN predictive model is a nontrivial "umber of weights is equal to the sum of the produc
task. Modeling issues that affect the performanice ob€tween the numbers of neurons in each layer.

an NN must be considered carefully. In order toActivation function. The activation function, also
ensure good performance of an MLP BP models, it icalled the transfer function, is a mathematical
inevitable to develop them in a systematic mannerformula that gives the output of a neuron as a
Such an approach needs to address major factdis suitinction of its input signals. The most used
as the determination of adequate model inputs, datctivations functions are: sigmoid (logistic or
division and pre-processing, the choice of suitablesquashing) function, hyperbolic tangent functianes
network architecture, choice of training parametersor cosine function and linear function. Typicallyet
etc. Namely, two crucial processes are of impoganc activation function is chosen based on the kind of
model development and issues in selecting MLPdata used and type of the layer. For prediction
parameters, i.e. determining training parameters opurposes it is common to use a sigmoid or hypecboli

BP and topology of MLP. tangent functions in both hidden and output layer o
sigmoid or hyperbolic tangent function in hidden
4.1 Selection of MLP BP network parameters layer and linear in the output layer.

Configuring MLP architecture usually comprises theTraining parameters. Selection of training parameters
decisions about the internal architecture anditigin s very important for proper training of NN. The sho
parameters. important training parameters are: learning caeffic
Internal architecture. Specifying the internal momentum, epochs and initial weights.
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Learning coefficient. Learning coefficient is the rate, take process parameters as inputs and producessproc
at which the network adjusts its weights duringresponses as outputs. In order to developed opiiidal
training. A high learning coefficient allows the model it is necessary to identify process paramiétat
network to learn faster, hence providing fasteraffect the process response and to assign them as
convergence. With a small learning coefficient, network inputs. The selection of the suitable raspo
training time is increased, but the probability of for network outputs requires understanding of tlkerg
reaching the global minimum is increased. Practicaprocess. NN can be trained to predict both single-
guidelines for selecting learning coefficient value response and multi-response.

are given in (Basheer & Hajmeer, 2000), andData collection. For a successful application of NN
(Tarassenko, 1999). modeling, it needs to collect as much data ase#ust
Momentum. Momentum is a training parameter used toof volume, the quality and representativeness ef th
reduce training time of the BP algorithm and toseme  collected data is important when NN performance is
the stability of the learning. The method involvesconsidered. It is not possible to say how many data
adding a term to the weight adjustment that istems are appropriate, because this depends on the
proportional to the amount of the previous weightcomplexity of the modeling problem. Data can be
change. A high momentum reduces the risk of theollected in various ways: from simulation, by
network being stuck in local minimum, but it incsea  experimental research or actual process data. yn an
the risk of skipping over the solution. Using a Bma case, it is necessary to filter and pre-processaite.

value for momentum will lead to prolonged training. Data filtering. Data filtering include data integrity
The values of 0.01 for learning rate and 0.9 forcheck and extreme data removal. Errors such as
momentum are adopted by most researchers becauséngorrectly entered data, duplicated and missing da
BP network with these settings has the best predict have to be corrected, because the NN model
performance with the least number of epochs. performance in direct link with the quality of the
Epochs. The epochs of the training cycle is the data. Very extreme data should be also removed
number of times the training data has been predentédecause it can interfere with the training process.

to the network. The BP algorithm guarantees thabata pre-processing. The NN can only work with
total error in the training set will continue toodease data within certain ranges and in specified formats
as the number of epochs increases. With each epocbata pre-processing usually speeds up the learning
the weights are modified to decrease the errothen t process and it usually performed. Pre-processing ca
training patterns. As training progresses, the ahou pe in the form of data scaling (normalization) and
of change in the error function becomes smallertransformation. Scaling the data is essential and i
Convergence occurs when the change in the erraflosely related to the activation function used.
function is less than a specified threshold. Simtita  Scaling to [-1,1] for the hyperbolic tangent trasf
the problem of over-fitting, the problem of over- function and to [0,1] for the sigmoid transfer ftinn
training may occur if the number of epochs isis often applied. However, some researchers
considerably high. The number of epochs required forecommended that the data be normalized between
proper generalization is often determined by @iad  slightly offset values such as [0.1, 0.9] or [0025]
error method and cross validation method. rather than between 0 and 1 to avoid saturatidheof
Initial weights. BP network is sensitive to initial values sigmoid function leading to slow or no learning. In
of weights. Too small initial weights will the tremg  some situations, where parameters have an
time and difficulties in converging to an optimal exceptionally large range, it may be beneficialatce
solution may occur. If initial weights are too larthe logarithm of data prior to scaling.

network may get unstable weights. The initial Selection of training and testing set. After data
connection weights must also be specified prior taollection and pre-processing, all the data shdeld
training. The weight initialization can be set andom randomly divided into two sets: training set and
way or using evolutionary algorithms. Typically, testing set. The training set is used for NN model
weights and biases are initialized uniformly in adevelopment and the test set is used for estimgtimg

relatively small range within +0.5 or +1. prediction ability of the model. If enough data is
available, it is recommended to divide the data set
4.2 NN model development into a training set, a validation set, and a testEhe,

Several steps need to be considered Wh_en developiRglidation set (stopping set) is not used for weigh
NN models. Generally, the developing processypdate, but to assess the performance of the model.
include: selection of input and output parameterspy ysing a validation set, over-fitting and over-
data collection, data filtering, data pre-procegsin training problems could be avoided. The proportion
selection of training and testing set and modely training to testing data varied considerablythie
validation and performance measures. published research. It is common to divide all
Selection of input and output parameters. The idea of  available data so that 90, 80 or 70% are selected f
using NN to model the process is to create nettv@k  training purposes and the remaining for testingeWh
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using a validation set, dividing the data into theee  The data used for modeling is attained in next
parts: 50% for training, and 25% each for validatio conditions: machining operation is longitudinal
and testing could be reasonably. turning, the work piece material is grey cast-iron,
Model validation and performance measures. Once  low-tensile, with hardness of HB=180, and ferritic
the model is developed, the performance of thestructure (C2.5-4.5%, Si max 3%, P max 1.5%,
trained model should be validated. The purposé®ft S<0.2%, Mn<1.5%), cutting tool is with 7&ntering
model validation phase is to assess the modeingle, 6 positive rake angle, and Coromant grade
generalization ability. This is achieved by measyrri  GC315 (K15).
the performance of trained NN on test set, whichNet power requirement in dependence of feed rate,

contain the data that NN has not seen. The mosiutting speed and depth of cut is done in table 1.
important measure of performance is the prediction

accuracy. An accuracy measure is often defined in Table 1. Net power requirement

terms of the prediction error which is the diffezen P [KW]

between the actual (desired) and the predictedevalu f Ve a, [mm]

There are a number of measures of accuracy in thelMm/revl| [m/min] 1 2 3 4
literature gnd gach has advantages and limitations. 1 275 1.0 15 25 3.0
They are listed in (Zhang et al., 1998). 0.2 220 1.0 201 30/ 40
The coefficient of correlation (R)the root mean 03 190 10 50 35 15
squared error (RMSE) and the mean absolut

percentage error (MAPE) are the main criteria that 0.4 165 1.0 2.5 3.5 4.5
are often used to evaluate the prediction perfooman 0.5 150 15 2.5 4.0 5.0
of NNs models. The coefficient of correlation is a| 0.6 135 15 25| 40| 55
measure that is used to determine the relativg 0.8 110 15 2.5 4.0 5.0
correlation and the goodness-of-fit between the| 1.0 90 1.5 2.5 4.0 5.0
predicted and observed data. 1.2 30 15 25 4.0 5.0

The interpretation of correlation coefficient iSalfows:
|[R|>=0.8 — strong correlation exists

0.8>=|R[>=0.2 — correlation exists Considering important steps in NN development and

important training and architectural parameters of

|[R|<=0.2 — weak correlation exists - )
The RMSE and has the advantage that large erro%ﬂebzlggegetwork, optimal cutting power model was

receive' much greater attention than small EITOTSA three layer MLP network with three input neurons
.MAPE IS .scale 'e.SS and therefore useful for ease 0rfepresenting cutting speed, feed rate and depthtof
interpretation, but in contrast to RMSE does neattr one hidden layer and one neuron in the output
small errors symmetrically W"Fh large EIrors. A ddaN representing cutting power was designed and trained
model should have a correlation coefficient ové j@nd

) with the BP training algorithm.
RMSE and MAPE should be as close to 0 as possible. The upper limit of number of hidden neurons was

determined knowing that the number of weight
doesn’'t exceed the number of training samples.dasy

to calculate that for three inputs, the maximuravedid
number of hidden neurons is 7 for 28 training data.
Various network architectures were developed. The
hyperbolic tangent sigmoid transfer function isdise
in the hidden layer and linear transfer functiorthia

: : : : %utput layer. The following training parameters &ver
analytical regression analysis can be used to escr used: learning coefficient 0.01, momentum 0.9jahit

the relationships between mputs aqd OUtpUtS’_W'ﬂeNeights uniformly sampled from the range +0.5 and
much less effort. However, tt@m of this example is

: the number of epochs was determined using trial and
to present methodology of NN modeling. error approach.

The data was randomly divided in two sets: training
set with 28 samples, and testing set with 8 samples
Since hyperbolic tangent transfer function was used
in hidden layer the data were scaled to [-1,1] eang
In order to determine the best network structurdnef
ANN prediction models, the combination of RMSE,
MAPE and R was used. The 3-6-1 network
architecture was found to be optimal. The
performance measures on trying and testing arangive
Fig. 5. Formula for the cutting power in table 2.

5. MODELING OF CUTTING POWER: AN
EXAMPLE

The methodology of NN modeling on the example of
modeling cutting power is described. Formula fa th
cutting power are given in figure 5. Since the

OUTPUT FORMULA OF PROCESS INPUT

P.
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Table 2. NN model performances surface roughness in CNC lathe using artificial
TEST | TRAINING neural network. Journal of Materials Processing
R 0.994 0.993 Technology, 209, 7, ISSN 0924-0136, pp. 3125-3137
: : 4. Madic, M., Radovanovic M. (2009)rtificial
MAPE 5.420 3.332 neural networks and their application in
RM SE 0.372 0.176 manufacturing processes, Journal "IMK-14, research

and development”, year XV, No 3-4, ISSN 0354-
Figure 6 presents the graph that shows th&829, pp. 39-44
comparisons of NN model prediction and target data.5. Madic, M., Radovanovic, M. ( 2009pplication
of Artificial Neural Networks in Manufacturing
g Technologies, International Scientific Conference
5 UNITECH'09, ISSN 1313-230X, pp. 11.593-11.599,
Gabrovo, Bulgaria.
6. Madic, M., Radovanovic, M., Lazarevic, D.
(2009). Artificial neural networks in  non-
conventional machining  processes, Second
International Conference on Diagnosis and Predictio
in Mechanical Engineering Systems (DIPRE'09), CD-
v , ) ROM, ISBN 978-606-8008-33-2, Galati, Romania.
b2 i 4 s 6 78 7. Mukherjee, I., Ray, P.K. (2006 review of
Test set samples optimization techniques in metal cutting processes.
Fig. 6. Comparison of NN predicted and target data ~ Computers & Industrial Engineering, 50, 1, ISSN
0360-8352, pp. 15-34
As it can be seen from the figure, the NN predittio 8. Radovanovic, M., Madic, M., Jankovic, P. (2008).
model provided high accuracy in predicting cutting artificial Neural Network Modeling of Cutting Force

= Simulated

Cutting power
2 )

=8-NN predicted

power for test samples. Components by Turning, International Scientific
Conference UNITECH'08, ISSN 1313-230X, pp. lI-
6. CONCLUSIONS 486-11-490, Gabrovo, Bulgaria.

) ] 9. Radovanovic, M., Madic, M., Jankovic, P. (2008).
This paper has discussed neural network basegyyjication of Neural Networks in Metal Cutting"
modeling of machining processes. Basic ideas anfl,national Conference "Research and
concept of applying neural networks for modeling OfDeveIopment in Mechanical Industry”- RaDMI 2008
machining processes have been given. Modeling Wiﬂbp 322-328 ISBN 978-86-83803-24-3. UJice Ser,bia
neural networks is not a trivial task, since thare 10' Radova’novic M. Madic. M Jank’ovic P (2008.)
are no formal theories for determining, a priohie t Cdmparison of I’?eg}on ’Mo.o,lel and A:rtificial

optimal network model. In this paper the Neural Network Modd for Predictin :

) . g the Main
methodology of modeling W!th MLP BP neural.Cutting Force by Turning, Buletinul Institutului
network was presented to assist current and patent'PoIitechnic din lasi. tom LIV. fac.2. ISSN 1011-

users. Methodology of neural network modeling2855 pp. 95-104, , lasi, Romania
comprised of two integral parts: model developing 1 ',I'ara.lssenko’ ’L (,1998)A Guide to Neural

and selection of training parameters. We discusse omputing Applications, Arnold Publishers, ISBN 0
six crucial steps of model building phase and340 70589 2 London’ '
presented some guidelines for determining th 2. Zhang G PatuWo B.E. & Hu, M.Y. (1998)
training parameters. These issues are of Cruc%orecasting’witﬁ artificial’neural networ’ks the tate

|mp((j)_rt?nce ford (ljeveITohplng nﬁ]urglll netwo;k baselof the art. International Journal of Forecasting, 14, 1,
prediction models. e methodology of neural| oy 01692070, pp. 35-62

network modeling was successfully applied for13. Zhang-Xue, F., Zhi-Guang, Y., Kusiak, A.

modeling of cutting power. (2006), Sdection and validation of predictive
regresson and neural network models based on
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